在一定的條件下,合適的阻火器能起到有效阻止火焰傳播的作用,但是,每種阻火器都有其特定的工作范圍,超出其工作范圍,就無法保證阻火效果,因此需要對阻火器進行選型。
選型中首先需要確定阻火器的使用位置、介質類型(爆炸級別)以及操作工況(壓力、溫度)等三項基本因素。然后根據阻火器的使用場所進行管道/管端阻火器的劃分,根據安裝位置、介質類型和操作工況確定燃燒工況,完成阻火器初步選型。
在初步選型確認的基礎上,根據其他參數,諸如阻火器連接方式、阻火器通氣量、阻火器最大允許壓降、阻火器殼體/阻火芯材質、設計標準、同心/偏心設計以及是否需要伴熱夾套等具體要求,最終完成阻火器選用。
在以上阻火器選用涉及的參數中,工況簡單的可以根據工藝直接確定,而實際工程設計中工況都比較復雜,介質通常為氣體混合物,燃燒工況也復雜多樣,因此,阻火器的選用需要慎重考慮。這里僅介紹兩種影響因素:
1.介質類型:
GB 50058《爆炸危險環境電力裝置設計規范》第3.4.1中規定:爆炸性氣體混合物應按其最大試驗安全間隙(MESG)或最小點燃電流比(MICR)分級。
通常,阻火器選用過程中對介質類型的確定一般按照介質MESG值來劃分。
根據GB 3836.11《爆炸性環境用防爆電氣設備第11部分:由隔爆外殼“d”保護的設備》,在標準規定的試驗條件下,空腔內所有濃度的被試驗氣體或蒸汽與空氣的混合物點燃后,通過25mm長的火焰通路均不能點燃外部爆炸性混合物的內空腔兩部分之間的最大間隙。
2.燃燒工況:
在管道足夠長且燃燒足夠快的條件下,火焰會依次經歷爆燃、不穩定爆轟、穩定爆轟等幾個燃燒階段(圖3)。
低壓爆燃階段,速度一般可達到112m/s,壓力為0.1MPa;中壓爆燃階段,速度一般可達到20Om/s,壓力為0.4MPa;高壓爆燃階段,速度一般可達到30Om/s,壓力為2MPa;爆轟階段,速度一般可達到1900m/s,壓力為3.5MPa;過度爆轟階段,速度一般可達到2300m/s,壓力為21MPa;穩定爆轟階段,速度一般可達到1830m/s,壓力為35MPa。這是由于燃燒過程中產生“壓升”現象,當點燃充滿可燃氣體的水平管道的一端時,火焰首先傳向管壁,然后迅速向還未引燃的氣體傳播,燃燒產生的熱量使得燃燒氣體迅速膨脹,氣體膨脹又導致可燃氣體前端被壓縮,因而產生“壓升”。
火焰前端氣體被壓縮,密度增加,燃燒傳播速度加快,燃燒時產生的熱量增多,導致可燃氣體前端更劇烈地“壓升”。通常,如果阻火器距火源較遠,那么火焰爆燃可能就會轉變為爆轟火焰前端壓力增加會導致管道內的危險系數大大增加,同時對阻火器的阻火和耐壓能力要求也更為嚴苛。
若選用了錯誤的阻火器,將會成為安全生產的重大隱患,因此,必須嚴格根據燃燒工況選擇阻爆燃型或阻爆轟型的阻火器。不過在實際工程應用中,由于混合介質較為復雜,管道情況和火焰點位置都難以確定,無法對不同條件下的阻火器選型作出明確的規定,通常需通過運用標準和積累的工程經驗進行具體分析。
另外需要注意的是,由于管道中的彎頭對火焰傳播會起加速作用,因此,在阻火器的選型過程中要充分考慮這一因素。
當彎頭數量超過1個時,燃燒工況就變得較為復雜,需要模擬管線的真實情況,通過試驗來確定。若無試驗條件,為安全起見,一般要求選用爆轟型阻火器。
因此,在工藝允許的條件下,應盡量減少火源與阻火器之間的彎頭數量。